A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization

In the framework of supervised learning we prove that the iterative algorithm introduced in Umanità and Villa (2010) allows to estimate in a consistent way the relevant features of the regression function under the a priori assumption that it admits a sparse representation on a fixed dictionary.

متن کامل

Tikhonov Regularization

An important issue in quantitative nance is model calibration. The calibration problem is the inverse of the pricing problem. Instead of computing prices in a model with given values for its parameters, one wishes to compute the values of the model parameters that are consistent with observed prices. Now, it is well-known by physicists that such inverse problems are typically ill-posed. So, if ...

متن کامل

A Regularization Parameter for Nonsmooth Tikhonov Regularization

In this paper we develop a novel criterion for choosing regularization parameters for nonsmooth Tikhonov functionals. The proposed criterion is solely based on the value function, and thus applicable to a broad range of functionals. It is analytically compared with the local minimum criterion, and a posteriori error estimates are derived. An efficient numerical algorithm for computing the minim...

متن کامل

Elastic-net regularization in learning theory

Within the framework of statistical learning theory we analyze in detail the so-called elastic-net regularization scheme proposed by Zou and Hastie [H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B, 67(2) (2005) 301–320] for the selection of groups of correlated variables. To investigate the statistical properties of this scheme and in partic...

متن کامل

A convergent non-negative deconvolution algorithm with Tikhonov regularization

We propose easy-to-implement algorithms to perform blind deconvolution of nonnegative images in the presence of noise of Poisson type. Alternate minimization of a regularized Kullback-Leibler cost function is achieved via multiplicative update rules. The scheme allows to prove convergence of the iterates to a stationary point of the cost function. Numerical examples are reported to demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 2011

ISSN: 0885-064X

DOI: 10.1016/j.jco.2011.01.003